
Introduction to Algorithms
and Programming

Syrian Private University

Instructor: Dr. Mouhib Alnoukari

Problem Solving &
Structured Programming

Two phases involved in the design of any program:

1. Problem Solving Phase
• Define the problem.
• Outline the solution.
• Develop the outline into an algorithm.
• Test the algorithm for correctness.

2. Implementation Phase
• Code the algorithm using a specific programming

language.
• Run the program on the computer.
• Document and maintain the program.

Problem Solving & Program Design

Structured Programming Concept:
• Structured programming techniques assist the

programmer in writing effective error free
programs.

The elements of structured of programming
include:

1. Top-down development
2. Modular design

Structured Programming

Structure Programming Theorem

It is possible to write any computer program by
using only three (3) basic control structures,
namely:

1. Sequential

2. Selection (if-then-else)

3. Repetition (looping, DoWhile)

? Algorithm

Algorithm

An algorithm is a sequence of precise
instructions for solving a problem in

a finite amount of time.

Algorithm Properties

• It must be precise and unambiguous.

• It must give the correct solution in all
cases.

• It must eventually end.

Developing an Algorithm

• Understand the problem

(Do problem by hand. Note the steps)

• Devise a plan

(look for familiarity and patterns)

• Carry out the plan (trace)

• Review the plan (refinement)

Understanding the Algorithm

Possibly the simplest and easiest method to
understand the steps in an algorithm, is by
using the flowchart method. This algorithm is
composed of block symbols to represent each
step in the solution process as well as the
directed paths of each step.

Understanding the Algorithm

The most common block symbols are:

Understanding the Algorithm

Problem Example:

Find the average of a given set of numbers.

Understanding the Algorithm
Problem Example

Solution Steps - Proceed as follows:

1. Understanding the problem
(i) Write down some numbers on paper and

find the average manually, noting each
step carefully.

e.g. Given a list say: 5, 3, 25, 0, 9

Understanding the Algorithm
Problem Example

Solution Steps - Proceed as follows:

1. Understanding the problem

(i) Write down some numbers on paper

(ii) Count numbers | i.e. How many? 5

(iii) Add them up | i.e. 5 + 3 + 25 + 0 +
9 = 42

(iv) Divide result by numbers counted |
i.e. 42/5 = 8.4

Understanding the Algorithm
Problem Example

Solution Steps - Proceed as follows:

2. Devise a plan:

Make note of NOT what you did in steps (i)
through (iv) above, but HOW you did it.

In doing so, you will begin to develop the
algorithm.

Understanding the Algorithm
Problem Example

For Example:

How do we count the numbers?

Starting at 0 we set our COUNTER to 0.

Look at first number and add 1 to COUNTER.

Look at 2nd number and add 1 to COUNTER.

…and so on,

until we reach the end of the list.

Understanding the Algorithm
Problem Example

For Example:

How do we add numbers?

Let SUM be the sum of numbers in list.

i.e. Set SUM to 0

Look at 1st number and add number to SUM.

Look at 2nd number and add number to SUM.

…and so on,

until we reach end of list.

Understanding the Algorithm
Problem Example

For Example:

How do we compute the average?

Let AVE be the average.

then AVE = total sum of items .
number of items

= SUM .
COUNTER

Understanding the Algorithm
Problem Example

Solution Steps - Proceed as follows:

3. Identify patterns, repetitions and familiar
tasks.
Familiarity: Unknown number of items?

i.e. n item
Patterns : look at each number in the list
Repetitions: Look at a number

Add number to sum
Add 1 to counter

Understanding the Algorithm
Problem Example

Solution Steps - Proceed as follows:

4. Carry out the plan
Check each step
Consider special cases
Check result
Check boundary conditions:
e.g. What if the list is empty?

Division by 0?
Are all data values within specified range?

Understanding the Algorithm
Problem Example

Solution Steps - Proceed as follows:

5. Review the plan:

Can you derive the result differently?

Can you make the solution more general?

Can you use the solution or method for
another problem?

e.g. average temperature or average grades

Understanding the Algorithm
Problem Example

Solution Steps - Proceed as follows:

5. Review the plan:

Can you derive the result differently?

Can you make the solution more general?

Can you use the solution or method for
another problem?

e.g. average temperature or average grades

Understanding the Algorithm
Problem Example

Solution Steps - Proceed as follows:

Example

A flowchart representation of the algorithm for the above
problem can be as follows:

? C Language
Basic Data Type

Using C Programming Language

C Basic Data Types

In C, data type categorized as:

1. Primitive Types : char, short, int, float,
double and long.

2. User Defined Types – struct, union, enum and
typedef.

3. Derived Types – pointer, array and function
pointer.

C Programming
Numeric Primitive Data Types

• The difference between the various numeric
primitive types is their size, and therefore the values
they can store:

Type

char

short

int

long

float

double

Storage

8 bits

16 bits

32 bits

64 bits

32 bits

64 bits

Min Value

-128

-32,768

-2,147,483,648

< -9 x 1018

+/- 3.4 x 1038 with 7 significant digits

+/- 1.7 x 10308 with 15 significant digits

Max Value

127

32,767

2,147,483,647

> 9 x 1018

Computer Memory

Main memory is divided

into many memory

locations (or cells)

9278

9279

9280

9281

9282

9283

9284

9285

9286
Each memory cell has a

numeric address, which

uniquely identifies it

Storing Information

9278

9279

9280

9281

9282

9283

9284

9285

9286

Large values are

stored in consecutive

memory locations

10011010

Each memory cell stores a

set number of bits (usually

8 bits, or one byte)

Storing a Char

9278

9279

9280

9281

9282

9283

9284

9285

9286

char (8 bits = 1 byte)

Storing a Short

9278

9279

9280

9281

9282

9283

9284

9285

9286

short (16 bits = 2 bytes)

Storing an int

9278

9279

9280

9281

9282

9283

9284

9285

9286

int (32 bits = 4 bytes)

Storing a long

9278

9279

9280

9281

9282

9283

9284

9285

9286

long (64 bits = 8 bytes)

Storing a float

9278

9279

9280

9281

9282

9283

9284

9285

9286

float (32 bits = 4 bytes)

Storing a doable

9278

9279

9280

9281

9282

9283

9284

9285

9286

double (64 bits = 8 bytes)

Characters

• A char variable stores a single character

• Character literals are delimited by single quotes:

'a' 'X' '7' '$' ',' '\n'

• Example declarations:

char topGrade = 'A';

char terminator = ';', separator = ' ';

Character Strings

• A string of characters can be represented as a string
literal by putting double quotes around the text:

• Examples:

"This is a string literal."

"123 Main Street"

"X"

• Note the distinction between a primitive character
variable, which holds only one character, and a
String object, which can hold multiple characters

? C Language
Printf() & Scanf() Function

Printf ()

• printf(“format string”, variable1, variable2, …);

• printf(“For int use %d”, myInteger);

• printff(“For float use %f”, myFloat);

• printf(“For double use %lf”, myDouble);

• printf(“For float or double %g”, myF_or_D);

• printf(“int=%d double %lf”, myInteger, myDouble);

Scanf()

• scanf(“format string”, &variable1, &variable2, …);

• scanf(“%d”, &myInteger);

• scanf(“%f”, &myFloat);

• scanf(“%lf”, &myDouble);

• scanf(“%d%f”, &myInteger, &myFloat);

Escape Sequences

• What if we wanted to print a the quote character?

• The following line would confuse the compiler because it
would interpret the second quote as the end of the string

printf ("I said "Hello" to you.");

• An escape sequence is a series of characters that
represents a special character

• An escape sequence begins with a backslash character
(\)

printf ("I said \"Hello\" to you.");

Escape Sequences

• Some C escape sequences:

Escape Sequence

\b

\t

\n

\r

\a

\"

\'

\\

Meaning

backspace

tab

newline

carriage return

beep

double quote

single quote

backslash

? C Language
Exercises

Char Type Exercise

#include <stdio.h>

int main(void)

{

char chVar = 'A';

signed char chSignedVar = 'B';

unsigned char chUnSignedVar = 'C';

printf("char value is %c (%d), its size is %d byte.\n", chVar, chVar, sizeof(char));

printf("signed char value is %c (%d), its size is %d byte.\n", chSignedVar,

chSignedVar, sizeof(signed char));

printf("unsigned char value is %c (%d), its size is %d byte.\n", chUnSignedVar,

chUnSignedVar, sizeof(unsigned char));

return 0;

}

Long Int Type Exercise
#include <stdio.h>

int main(void)

{

// declare and initialize variables

long nNumLg = -10000;

long int nNumLgInt = 200000;

signed long nNumSignedLg = -3000000;

signed long int nNumSignedLgInt = 40000000;

unsigned long nNumUnSignedLg = 500000000;

float nNumFloat = (float)6.71234;

double nNumDouble = 789.652341;

long double nNumLgDouble = 9796.6174;

// print those values

printf("long value is %ld with %d bytes in size.\n", nNumLg, sizeof(long));

printf("long int value is %ld with %d bytes in size.\n", nNumLgInt, sizeof(long int));

printf("signed long value is %ld with %d bytes in size.\n", nNumSignedLg, sizeof(signed long));

printf("signed long int value is %ld with %d bytes in size.\n", nNumSignedLgInt, sizeof(signed long int));

printf("unsigned long value is %lu with %d bytes in size.\n", nNumUnSignedLg, sizeof(unsigned long));

printf("\nfloat value is %f with %d bytes in size.\n", nNumFloat, sizeof(float));

printf("double value is %f with %d bytes in size.\n", nNumDouble, sizeof(double));

printf("long double value is %lf with %d bytes in size.\n", nNumLgDouble, sizeof(long double));

return 0;

}

Ptr Diff Exercise
#include <stdio.h>

int main(void)

{

// declare two pointer variables

int *pPointA = NULL, *pPointB = NULL;

// two integer variables

int nNumA, nNumB;

// and variable to hold the result of subtracting

// two pointers

ptrdiff_t ptDiffVar;

// assign integers to variables

nNumA = 24;

nNumB = 45;

// let those pointers point to those variables

pPointA = &nNumA;

pPointB = &nNumB;

// subtract those pointers and store at ptDiffVar

ptDiffVar = pPointA - pPointB;

>>>>

Ptr Diff Exercise

// print some info

printf("Value of of pPointA is %i and pPointB is %i\n", *pPointA, *pPointB);

printf("Address of pPointA is %X and pPointB is %X\n", pPointA, pPointB);

printf("The size of ptrdiff_t is %d bytes\n", sizeof(ptDiffVar));

printf("The difference between two pointers is %X (%d)\n", ptDiffVar, ptDiffVar);

ptDiffVar = pPointB - pPointA;

printf("The difference between two pointers is %X (%d)\n", ptDiffVar, ptDiffVar);

return 0;

}

Common Bugs (printf, scanf)

• Using & in a printf function call.
printf(“For int use %d”, &myInteger); // wrong

• Using the wrong string in printf
printf(“This is a float %d”, myFloat); // use %f not %d

• Not using & in a scanf() function call.
scanf(“%d”, myInteger); // Wrong

• Using the wrong string in scanf()
scanf(“%d”, &myFloat); // wrong; use %f instead of %d

